Denoising in Wavelet Domain Using Probabilistic Graphical Models

نویسندگان

  • Maham Haider
  • Muhammad Usman Riaz
  • Imran Touqir
  • Adil Masood Siddiqui
چکیده

Denoising of real world images that are degraded by Gaussian noise is a long established problem in statistical signal processing. The existing models in time-frequency domain typically model the wavelet coefficients as either independent or jointly Gaussian. However, in the compression arena, techniques like denoising and detection, states the need for models to be nonGaussian in nature. Probabilistic Graphical Models designed in time-frequency domain, serves the purpose for achieving denoising and compression with an improved performance. In this work, Hidden Markov Model (HMM) designed with 2D Discrete Wavelet Transform (DWT) is proposed. A comparative analysis of proposed method with different existing techniques: Wavelet based and curvelet based methods in Bayesian Network domain and Empirical Bayesian Approach using Hidden Markov Tree model for denoising has been presented. Results are compared in terms of PSNR and visual quality. Keywords—Guassian Mixture Models (GMM); Hidden Markov Model (HMM); Discrete Wacelet Transform (DWT); Hidden Markov Tree (HMT)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Wavelet-based statistical signal processing using hidden Markov models

Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMM’s) that concisely models the statistical dependen...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

Wavelet - Based Statistical Signal

Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coeecients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMMs). The framework enables us to concisely model the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016